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Fig. 1. Detail-preserving pose-guided person image generation. We present a single-image human reposing algorithm guided by arbitrary body shapes
and poses. Our method first transfers local appearance features in the source image to the target pose with a human body symmetry prior. We then leverage a
pose-conditioned StyleGAN2 generator with spatial modulation to produce photo-realistic reposing results. Our work enables applications of posed-guided
synthesis (left) and virtual try-on (right). Thanks to spatial modulation, our result preserves the texture details of the source image better than prior work.

We present an algorithm for re-rendering a person from a single image under
arbitrary poses. Existing methods often have difficulties in hallucinating
occluded contents photo-realistically while preserving the identity and fine
details in the source image. We first learn to inpaint the correspondence
field between the body surface texture and the source image with a human
body symmetry prior. The inpainted correspondence field allows us to trans-
fer/warp local features extracted from the source to the target view even
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under large pose changes. Directly mapping the warped local features to
an RGB image using a simple CNN decoder often leads to visible artifacts.
Thus, we extend the StyleGAN generator so that it takes pose as input (for
controlling poses) and introduces a spatially varying modulation for the
latent space using the warped local features (for controlling appearances).
We show that our method compares favorably against the state-of-the-art
algorithms in both quantitative evaluation and visual comparison.
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1 INTRODUCTION
Controllable, photo-realistic human image synthesis has a wide
range of applications, including virtual avatar creation, reposing,
virtual try-on, motion transfer, and view synthesis. Photo-realistic
rendering of human images is particularly challenging through tradi-
tional computer graphics pipelines because it involves 1) designing
or capturing 3D geometry and appearance of human and garments,
2) controlling poses via skeleton-driven deformation of 3D shape,
and 3) synthesizing complicated wrinkle patterns for loose clothing.
Recent learning-based approaches alleviate these challenges and
have shown promising results. These methods typically take inputs
1) a single source image capturing the human appearance and 2) a
target pose representation (part confidence maps, skeleton, mesh,
or dense UV coordinates) and synthesize a novel human image with
the appearance from source and the pose from the target.
Image-to-image translation based methods [Esser et al. 2018; Ma

et al. 2017, 2018; Pumarola et al. 2018; Siarohin et al. 2018], building
upon conditional generative adversarial networks [Isola et al. 2017],
learn to predict the reposed image from the source image and the
target pose. However, as human reposing involves significant spatial
transformations of appearances, such approaches often require per-
subject training using multiple images from the same persons [Chan
et al. 2019; Wang et al. 2018a] or are incapable of preserving the
person’s identity and the fine appearance details of the clothing in
the source image.

Surface-based approaches [Grigorev et al. 2019; Lazova et al. 2019;
Neverova et al. 2018; Sarkar et al. 2020] map human pixels in the
source image to the canonical 3D surface of the human body (e.g.,
SMPL model [Loper et al. 2015]) with part segmentation and UV
parameterization. This allows transferring pixel values (or local fea-
tures) of visible human surfaces in the input image to the correspond-
ing spatial location specified by the target pose. These methods thus
retain finer-grained local details and identity compared to image-to-
image translation models. However, modeling human appearance
as a single UV texture map cannot capture view/pose-dependent
appearance variations and loose clothing.

StyleGAN-basedmethods [Lewis et al. 2021;Men et al. 2020; Sarkar
et al. 2021] very recently have shown impressive results for control-
lable human image synthesis [Men et al. 2020; Sarkar et al. 2021] or
virtual try-on [Lewis et al. 2021]. The key ingredient is to extend
the unconditioned StyleGAN network [Karras et al. 2020] to a pose-
conditioned one. While their generated images are photo-realistic, it
remains challenging to preserve fine appearance details (e.g., unique
patterns/textures of garments) in the source image due to the global
(spatially-invariant) modulation/demodulation of latent space.

We present a new algorithm for generating detail-preserving and
photo-realistic re-rendering of human with novel poses from a single
source image. Similar to the concurrent work [Lewis et al. 2021;
Sarkar et al. 2021], we use a pose-conditioned StyleGAN network
for generating pose-guided images. To preserve fine-grained de-
tails in the source image, we learn to inpaint the correspondence
field between 3D body surface and the source image using a body
symmetry prior. Using this inpainted correspondence field, we trans-
fer local features from the source to the target pose and use the
warped local features to modulate the StyleGAN generator network
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Fig. 2. Limitations of existing methods. Existing human reposing meth-
ods struggle to preserve details in the source image. Common issues include
identity (1st and 2nd columns) and clothing textures (3rd, 4th columns)
changes. Compare these results with ours in Figure 1.

at multiple StyleBlocks in a spatially varying manner. As we com-
bine complementary techniques of photo-realistic image synthesis
(from StyleGAN-based methods) and the 3D-aware detail transfers
(from surface-based methods), our method achieves high-quality
human-reposing and garment transfer results (Figure 1) and allevi-
ates visible artifacts compared with the state-of-the-art (Figure 2).
While StylePoseGan [Sarkar et al. 2021] (concurrent work to ours)
also combines pose-conditioned StyleGAN with the use of proxy
geometry, its global modulation/demodulation scheme limits its
ability to preserve fine appearance details. We evaluate the pro-
posed algorithm visually and quantitatively using the DeepFashion
dataset [Liu et al. 2016] and show favorable results compared to the
current best-performing methods. Our contributions include:

• We integrate the techniques from surface-based and styleGAN-
basedmethods to produce detail-preserving and photo-realistic
controllable human image synthesis.

• We propose an explicit symmetry prior of the human body for
learning to inpaint the correspondence field between human
body surface and the source image which facilitates detail
transfer, particularly for drastic pose changes.

• We present a spatially varying variant of latent space modu-
lation in the StyleGAN network, allowing us to transfer local
details while preserving photo-realism.
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2 RELATED WORK

2.1 Pose-guided Person Image Synthesis
Pose-guided person image synthesis aims to transfer a person’s
appearance from a source image to a target pose. Example appli-
cations include motion transfer [Aberman et al. 2019; Chan et al.
2019; Yoon et al. 2021], human reposing [Ma et al. 2017, 2018; Men
et al. 2020], and virtual try-on [Lewis et al. 2021; Men et al. 2020;
Sarkar et al. 2021]. These approaches typically encode the pose as
either part confidence maps [Aberman et al. 2019; Ma et al. 2017,
2018] or skeleton [Chan et al. 2019; Esser et al. 2018; Men et al.
2020; Pumarola et al. 2018; Ren et al. 2020; Siarohin et al. 2018;
Zhu et al. 2019] and use a conditional GAN to produce the reposed
images. To handle large pose changes, existing methods leverage
per-subject training [Aberman et al. 2019; Chan et al. 2019; Wang
et al. 2018a], spatial transformation/deformation [Balakrishnan et al.
2018; Ren et al. 2020; Siarohin et al. 2018], and local attention [Ren
et al. 2020]. To retain the source identity and appearance, surface-
based methods first establish the correspondence between pixels
from the source/target image to a canonical coordinate system of
the 3D human body (with UV parameterization). These methods
can then transfer pixels [Alldieck et al. 2019; Grigorev et al. 2019;
Lazova et al. 2019; Neverova et al. 2018] or local features [Sarkar
et al. 2020] to the target pose. As the commonly used UV parame-
terization only captures the surface of a tight human body [Loper
et al. 2015], methods either explicitly predict garment labels [Yoon
et al. 2021] or implicitly re-render the warped features [Sarkar et al.
2020]. Very recently, pose-conditioned StyleGAN networks have
been proposed [Lewis et al. 2021; Sarkar et al. 2021]. To control the
target appearance, pose-independent UV texture [Sarkar et al. 2021]
is used to modulate the latent space. Our method builds upon pose-
conditioned StyleGAN but differs from prior work in two critical
aspects. First, instead of global latent feature modulation used in
prior work, we propose to use a spatially varying modulation for
improved local detail transfer. Second, we train a coordinate inpaint-
ing network for completing partial correspondence field (between
the body surface and source image) using a human body symmetry
prior. This allows us to directly transfer local features extracted
from the source to the target pose.

2.2 Neural Rendering
Neural rendering methods first render a coarse RGB image or neural
textures that is then mapped to an RGB image using a translation
network [Kim et al. 2018; Liu et al. 2020; Meshry et al. 2019; Raj
et al. 2021; Tewari et al. 2020c; Thies et al. 2019]. Recent research fo-
cuses on learning volumetric neural scene representations for view
synthesis [Lombardi et al. 2019; Mildenhall et al. 2020]. This has
been extended to handle dynamic scenes (e.g., humans) [Gao et al.
2021; Li et al. 2021; Park et al. 2021; Tretschk et al. 2021; Xian et al.
2021]. Recent efforts further enable controls over viewpoints [Gafni
et al. 2021; Gao et al. 2020], pose [Noguchi et al. 2021; Peng et al.
2021], expressions [Gafni et al. 2021], illumination [Zhang et al.
2021] of human face/body. However, most of these approaches of-
ten require computationally expensive per-scene/per-person training.
Our method also uses body surface mesh as our geometry proxy for
re-rendering. Instead of using a simple CNN translation network,

we integrate the rendered latent texture with StyleGAN through
spatially varying modulation. In contrast to volumetric neural ren-
dering techniques, our method does not require per-subject training.

2.3 Deep Generative Adversarial Networks
Deep generative adversarial networks have shown great potentials
for synthesizing high-quality photo-realistic images [Brock et al.
2019; Goodfellow et al. 2014; Karras et al. 2018, 2020; Zhang et al.
2019]. Using the pre-trained model, several works discover direc-
tions in the latent space that correspond to spatial or semantic
changes [Härkönen et al. 2020; Jahanian et al. 2020; Peebles et al.
2020; Shen and Zhou 2021; Shoshan et al. 2021]. In the context of
portrait images, some recent methods provide 3D control for the
generated samples [Abdal et al. 2021; Tewari et al. 2020b] or real
photographs [Tewari et al. 2020a]. Our work focuses on design-
ing a pose-conditioned GAN with precise control on the localized
appearance (for virtual try-on) and pose (for reposing).

2.4 Image-to-Image Translation
Image-to-image translation provides a general framework for map-
ping an image from one visual domain to another [Isola et al. 2017;
Park et al. 2019; Wang et al. 2018b]. Recent advances include learn-
ing from unpaired dataset [Huang et al. 2018; Lee et al. 2018; Zhu
et al. 2017], extension to videos [Wang et al. 2019, 2018a], and talk-
ing heads [Wang et al. 2021; Zakharov et al. 2019]. Similar to many
existing human reposing methods [Chan et al. 2019; Ma et al. 2017,
2018; Men et al. 2020; Pumarola et al. 2018; Ren et al. 2020; Zhu et al.
2019], our work maps an input target pose to an RGB image with
the appearance from a source image. Our core technical novelties
lie in 1) spatial modulation in StyleGAN for detail transfer and 2) a
body symmetry prior for correspondence field inpainting.

2.5 Localized Manipulation
When editing images, Localized manipulation is often preferable
over global changes. Existing work addresses this via structured
noise [Alharbi andWonka 2020], local semantic latent vector discov-
ery [Chai et al. 2021], latent space regression [Collins et al. 2020],
and explicit masking [Shocher et al. 2020]. Our spatial feature mod-
ulation shares high-level similarity with approaches that add spatial
dimensions to the latent vectors in unconditional StyleGAN [Alharbi
and Wonka 2020; Kim et al. 2021] and conditional GANs [AlBahar
and Huang 2019; Park et al. 2019]. Our work differs in that our
spatial modulation parameters are predicted from the warped ap-
pearance features extracted from the source image instead of being
generated from random noise using a mapping network.

2.6 Symmetry Prior
Symmetry prior (in particular reflective symmetry) has been applied
for learning deformable 3D objects [Wu et al. 2020], 3D reconstruc-
tion of objects [Sinha et al. 2012], and human pose regression [Yeh
et al. 2019]. Our work applies left-right reflective symmetry to facil-
itate the training of coordinate-based texture inpainting network.
The symmetry prior allows us to reuse local appearance features
from the source and leads to improved results when source and
target poses are drastically different.
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Fig. 3. Method overview. Our human reposing model builds upon a pose-conditioned StyleGAN2 generator [Karras et al. 2020]. We extract the Dense-
Pose [Güler et al. 2018] representation 𝑃𝑡𝑟𝑔 and use a pose encoder𝐺𝑝𝑜𝑠𝑒 to encode 𝑃𝑡𝑟𝑔 into 16 × 16 × 512 pose features 𝐹𝑝𝑜𝑠𝑒 which is used as input to the
StyleGAN2 generator [Karras et al. 2020]. To preserve the source image appearance, we encode the input source image 𝐼𝑠𝑟𝑐 into multiscale warped appearance
features 𝐹𝑎𝑝𝑝𝑖 using the source feature generator (Figure 4). To warp the feature from the source pose to the target pose we use the target coordinates𝑇𝑐𝑜𝑜𝑟𝑑 .
We compute these target coordinates 𝑇𝑐𝑜𝑜𝑟𝑑 using 1) the target dense pose 𝑃𝑡𝑟𝑔 and 2) the completed coordinates in the UV-space inpainted using the
coordinate completion model (Figure 5). We pass the multi-scale warped appearance features 𝐹𝑎𝑝𝑝𝑖 through the affine parameters network to generate scaling
and shifting parameters 𝛼 and 𝛽 that are used to modulate the StyleGAN2 generator features in a spatially varying manner (Figure 7). Our training losses
include adversarial loss, reconstruction losses, and a face identity loss.

3 METHOD
Given an image of a person 𝐼𝑠𝑟𝑐 and a desired target pose 𝑃𝑡𝑟𝑔 rep-
resented by Image-space UV coordinate map per body part (shortly
IUV) extracted from DensePose [Güler et al. 2018], our goal is to
generate an image preserving the appearance of the person in 𝐼𝑠𝑟𝑐
in the desired pose 𝑃𝑡𝑟𝑔 . Note that this IUV representation of dense
pose entangles both the pose and shape representation.

We show an overview of our proposed approach in Figure 3. We
use a pose-guided StyleGAN2 generator [Karras et al. 2020] that
takes 16 × 16 × 512 pose features 𝐹𝑝𝑜𝑠𝑒 as input. The pose features
𝐹𝑝𝑜𝑠𝑒 are encoded from the DensePose representation [Güler et al.
2018] using a pose feature generator 𝐺𝑝𝑜𝑠𝑒 that is composed of
several residual blocks. Using the source and target pose, we use
coordinate completion model to produce target coordinate that
establishes the correspondence between target and source image.
To encode the appearance information, we use a feature pyramid
network [Lin et al. 2017] 𝐺𝑎𝑝𝑝 to encode the source image into
multiscale features and warp them according to the target pose. We
then use the warped appearance features to generate scaling and
shifting parameters to spatially modulate the latent space of the
StyleGAN generator.

3.1 Coordinate Completion Model
The IUV map of the source pose 𝑃𝑠𝑟𝑐 allows us to represent the
pose-independent appearance of the person in the UV-space. How-
ever, only the appearance of visible body surface can be extracted.
This leads to incomplete UV-space appearance representation and
thus may not handle the dis-occluded appearance for the target
pose 𝑃𝑡𝑟𝑔 . Previous work [Sarkar et al. 2021] encodes the partial
UV-space appearance to a global latent vector for modulating the
generator. This works well for clothing with uniform colors or ho-
mogeneous textures, but inevitably loses the spatially-distributed
appearance details. We propose to inpaint the UV-space appearance
by a neural network guided by the human body mirror-symmetry
prior. Instead of directly inpainting pixel values in UV-space, we
choose to complete the mapping from image-space to UV-space
established by 𝑃𝑠𝑟𝑐 and represented by UV-space source image coor-
dinates, in order to avoid generating unwanted appearance artifacts
while best preserving the source appearance. We refer to this net-
work as coordinate completion model. We show an overview of our
coordinate completion model in Figure 5.

Given a mesh grid and the dense pose of the input source image
𝑃𝑠𝑟𝑐 , we use a pre-computed image-space to/from UV-space map-
ping to map coordinates from the mesh grid to appropriate locations
in the UV-space (using bilinear sampling for handling fractional
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Fig. 4. Source feature generator. To preserve the source image appear-
ance, we encode the input source image 𝐼𝑠𝑟𝑐 into multiscale features 𝐹𝑠𝑟𝑐𝑎𝑝𝑝𝑖

and warp them from the source pose to the target pose 𝐹
𝑡𝑟𝑔
𝑎𝑝𝑝𝑖

using the
target coordinates𝑇𝑐𝑜𝑜𝑟𝑑 computed from the target coordinate generator
(Figure 3). We further process the warped features with a feature pyramid
network [Lin et al. 2017] to obtain the multi-scale warped appearance fea-
tures 𝐹𝑎𝑝𝑝𝑖 which go through affine parameters network to generate scaling
and shifting parameters 𝛼 and 𝛽 that are used to modulate the StyleGAN2
generator features in a spatially varying manner (Figure 7).

coordinates). We denote these base mapped coordinates as 𝐶𝑏𝑎𝑠𝑒
and the mask indicating where these coordinates are as𝑀𝑏𝑎𝑠𝑒 .

Since human appearances are often left-right symmetrical, in ad-
dition to these base coordinates, we also map the left-right mirrored
coordinates to the UV-space 𝐶𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 and denote their respective
mask as 𝑀𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 . Visualization of mapped base and mirrored
coordinates are shown in Figure 6.

We combine the incomplete UV-space base and mirrored coordi-
nates and their respective masks, such that:

𝑀𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 = 𝑀𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 − (𝑀𝑏𝑎𝑠𝑒 ·𝑀𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 ) (1)

𝑀𝑖𝑛 = 𝑀𝑏𝑎𝑠𝑒 +𝑀𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 (2)
𝐶𝑖𝑛 = 𝐶𝑏𝑎𝑠𝑒 ·𝑀𝑏𝑎𝑠𝑒 +𝐶𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 ·𝑀𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 (3)

We concatenate the combined coordinates 𝐶𝑖𝑛 and their mask
𝑀𝑖𝑛 and pass them as input to the coordinate completion model. To
implement our coordinate completion model, we follow a similar
architecture to the coordinate inpainting architecture proposed
by [Grigorev et al. 2019] with gated convolutions [Yu et al. 2019].

We train our model to minimize the ℓ1 loss between the generated
coordinates 𝐶𝑜𝑢𝑡 and the input coordinates, such that:

𝐿𝑐𝑜𝑜𝑟𝑑 = | |𝐶𝑜𝑢𝑡 ·𝑀𝑏𝑎𝑠𝑒 −𝐶𝑏𝑎𝑠𝑒 ·𝑀𝑏𝑎𝑠𝑒 | |1
+𝜆𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 · | |𝐶𝑜𝑢𝑡 ·𝑀𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 −𝐶𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 ·𝑀𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 | |1,

(4)

where 𝜆𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 is set to 0.5.
We also utilize the source-target pairs to train the coordinate

completion model. Specifically, we use the source dense pose 𝑃𝑠𝑟𝑐 to
map the generated complete coordinates from the UV-space to the
source image-space 𝑆𝑐𝑜𝑜𝑟𝑑 . Similarly, we also use the target dense
pose 𝑃𝑡𝑟𝑔 to map the generated complete coordinates from the UV-
space to the target image-space 𝑇𝑐𝑜𝑜𝑟𝑑 using the pre-computed
mapping table. We then use these target and source coordinates to

warp pixels from the input source image 𝐼𝑠𝑟𝑐 andminimize the ℓ1 loss
between the foreground of the warped images and the foreground
of the ground truth images, such that:

𝐿𝑟𝑔𝑏 = | |𝑤𝑎𝑟𝑝 (𝐼𝑠𝑟𝑐 , 𝑆𝑐𝑜𝑜𝑟𝑑 ) ·𝑀𝑃𝑠𝑟𝑐 − 𝐼𝑠𝑟𝑐 ·𝑀𝑃𝑠𝑟𝑐 | |1
+||𝑤𝑎𝑟𝑝 (𝐼𝑠𝑟𝑐 ,𝑇𝑐𝑜𝑜𝑟𝑑 ) ·𝑀𝑃𝑡𝑟𝑔 − 𝐼𝑡𝑟𝑔 ·𝑀𝑃𝑡𝑟𝑔 | |1,

(5)

where 𝑀𝑃𝑠𝑟𝑐 and 𝑀𝑃𝑡𝑟𝑔 are the source pose mask and target pose
mask, respectively.

The total loss to train the coordinate completion model is:

𝐿 = 𝐿𝑐𝑜𝑜𝑟𝑑 + 𝐿𝑟𝑔𝑏 (6)

3.2 Source Feature Generator
To preserve the appearance in source image 𝐼𝑠𝑟𝑐 , we encode it using
several residual blocks into multi-scale features 𝐹𝑠𝑟𝑐𝑎𝑝𝑝𝑖

. We utilize
the pretrained coordinate completion model to obtain the target
image-space coordinates 𝑇𝑐𝑜𝑜𝑟𝑑 such that it could warp the source
features 𝐹𝑠𝑟𝑐𝑎𝑝𝑝𝑖

from the source pose to the target pose 𝐹 𝑡𝑟𝑔𝑎𝑝𝑝𝑖
. We

then concatenate these warped features with the target dense pose
mask𝑀𝑝𝑡𝑟𝑔 and pass them into a feature pyramid network [Lin et al.
2017] to get our multi-scale warped appearance features 𝐹𝑎𝑝𝑝𝑖 . We
show our source feature generator in Figure 4.

3.3 Affine Parameters Network and Spatial Modulation
Prior to every convolution layer in each style block of StyleGAN2,
we pass the warped source features 𝐹𝑎𝑝𝑝𝑖 into an affine parame-
ters network to generate scaling 𝛼 , and shifting 𝛽 parameters. Each
convolution layer has its own independent affine parameters net-
work which is composed of two 1 × 1 convolutions separated by a
ReLU activation function for each parameter. To preserve spatial
details, we modify every convolution layer in each style block of
StyleGAN2 [Karras et al. 2020]. Instead of performing spatially in-
variant weight modulation and demodulation, we use the generated
scaling and shifting tensor parameters, 𝛼 and 𝛽 , to perform spatially
varying modulation of the features 𝐹𝑖 as follows:

𝐹i = 𝛼i ⊗ 𝐹i + 𝛽i, (7)

where 𝐹i is now the modulated features that will be passed as input
to the 3×3 convolution of styleGAN2 generator. The output features
of the convolution 𝐹i

𝑜𝑢𝑡 is then normalized to zero mean and unit
standard deviation. Such that:

𝐹i =
𝐹i
𝑜𝑢𝑡 − mean(𝐹i

𝑜𝑢𝑡 )
std(𝐹i

𝑜𝑢𝑡 )
(8)

Similar to StyleGAN2, we then add the noise broadcast operation
𝐵 and the bias to 𝐹i to get 𝐹𝑖+1 which will be fed into the next
convolution layer. In Figure 7, we illustrate our detailed spatial
modulation approach as well as the non-spatial weight modulation
and demodulation of StyleGAN2.

3.4 Training Losses
In addition to StyleGAN2 adversarial loss 𝐿𝑎𝑑𝑣 , we train our model
to minimize the following reconstruction losses:
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(a) Coordinate completion model (b) Training losses

Fig. 5. Coordinate completion model. The goal of the coordinate completion model is to learn how to reuse the local features of the visible parts of the
human in the source image for the invisible parts (unseen in the source pose) in the target pose. (a) Given a mesh grid and the dense pose of the input source
image 𝑃𝑠𝑟𝑐 , we map the base coordinates𝐶𝑏𝑎𝑠𝑒 and their symmetric counterpart𝐶𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 from the 2D mesh grid to the UV-space using a pre-computed
mapping table. We then concatenate the combined coordinates𝐶𝑖𝑛 and their corresponding visibility mask𝑀𝑖𝑛 as input to the coordinate completion model.
(b) We train the model to minimize the L1 loss between the predicted coordinates𝐶𝑜𝑢𝑡 and the input coordinates𝐶𝑖𝑛 as shown in Eqn. 4. We also minimize
the L1 loss between the warped source image and the warped target image as shown in Eqn. 5.
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(a) Base (b) Base ∪ Mirrored (c) Sym.-guided inpainting (a) Base (without symmetry) (b) Ours (with symmetry)︸                                                                                                ︷︷                                                                                                ︸Symmetry-guided inpainting ︸                                                                                ︷︷                                                                                ︸Reposed results

Fig. 6. Symmetry-guided inpainting. (Left) Given a mesh grid and the source image dense pose 𝑃𝑠𝑟𝑐 , we first map the coordinates from the 2D mesh grid
to appropriate locations in the UV-space using a pre-computed mapping table. We can then use these mapped base coordinates𝐶𝑏𝑎𝑠𝑒 to warp RGB pixels
from the input source image 𝐼𝑠𝑟𝑐 . We show the base coordinates and their warped RGB pixels in (a). (b) In addition to these base coordinates, we can also map
the left-right mirrored coordinates𝐶𝑚𝑖𝑟𝑟𝑜𝑟𝑒𝑑 from the 2D mesh grid to the UV space. To train our coordinate completion model, we combine the incomplete
base and mirrored coordinates in the UV-space. We then concatenate these combined coordinates with their respective mask and pass them as input to our
coordinate completion model. We show our completed coordinates and the UV texture map in (c). (Right) We compare the reposing results without and with
the proposed symmetry prior.

• ℓ1 loss. We minimize the ℓ1 loss between the foreground hu-
man regions of the synthesized image 𝐼𝑡𝑟𝑔 and of the ground
truth target 𝐼𝑡𝑟𝑔 .

𝐿ℓ1 = | |𝐼𝑡𝑟𝑔 ·𝑀𝑡𝑟𝑔 − 𝐼𝑡𝑟𝑔 ·𝑀𝑡𝑟𝑔 | |1, (9)

where𝑀𝑡𝑟𝑔 is the human foreground mask estimated using a
human parsing method [Gong et al. 2018].

• Perceptual loss. We minimize the weighted sum of the ℓ1 loss
between the pretrained VGG features of the synthesized ˆ𝐼𝑡𝑟𝑔

foreground and the ground truth 𝐼𝑡𝑟𝑔 foreground such that:

𝐿𝑣𝑔𝑔 =

5∑
𝑖=1

𝑤𝑖 · | |𝑉𝐺𝐺𝑙𝑖 (𝐼𝑡𝑟𝑔 ·𝑀𝑡𝑟𝑔) −𝑉𝐺𝐺𝑙𝑖 (𝐼𝑡𝑟𝑔 ·𝑀𝑡𝑟𝑔) | |1 (10)

We use 𝑤 = [ 1
32 ,

1
16 ,

1
8 ,

1
4 , 1.0] and VGG ReLU output layers

𝑙 = [1, 6, 11, 20, 29] following [Park et al. 2019; Wang et al.
2018b].
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(a) Non-spatial modulation
(StyleGAN2)

(b) Spatial modulation
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Fig. 7. Spatial vs. non-spatial modulation of StyleGAN2 features.Our
input to the StyleGAN2 generator is the encoded target pose features 𝐹𝑝𝑜𝑠𝑒
(a) StyleGAN2 [Karras et al. 2020] performs non-spatial modulation of fea-
tures by modulating and demodulating the weights of the convolutions
using the learned style vector 𝑆 . After the convolution the bias is added
as well as StyleGAN2 noise broadcast operation 𝐵. (b) To better leverage
the spatial features for preserving appearance details, we propose spatial
modulation of styleGAN2 features. Instead of modulating and demodulating
the weights of the convolutions, we modulate the mean and standard devi-
ation of the features. We perform this modulation before the convolution
using the shifting and scaling parameters, 𝛼 and 𝛽 , generated by the affine
parameters network (APN). We then normalize the output of the convolu-
tion to zero mean and unit standard deviation before adding the bias and
StyleGAN2 noise broadcast operation 𝐵.

• Face identity loss. We use MTCNN [Zhang et al. 2016] to
detect, crop, and align faces from the generated image 𝐼𝑡𝑟𝑔 and
ground truth target 𝐼𝑡𝑟𝑔 . When a face is detected, wemaximize
the cosine similarity between the pretrained SphereFace [Liu
et al. 2017] features of the generated face and the ground
truth target face. Such that:

𝐿𝑓 𝑎𝑐𝑒 = 1 −
(

𝑆𝐹 (𝐼𝑡𝑟𝑔)⊤𝑆𝐹 (𝐼𝑡𝑟𝑔)
max( | |𝑆𝐹 (𝐼𝑡𝑟𝑔) | |2 · | |𝑆𝐹 (𝐼𝑡𝑟𝑔) | |2, 𝜖)

)
(11)

where SF is the pretrained SphereFace feature extractor, and
𝑆𝐹 (𝐼𝑡𝑟𝑔) and 𝑆𝐹 (𝐼𝑡𝑟𝑔) are features of the aligned faces of the
generated and ground truth image respectively. 𝜖 = 𝑒−8 is a
very small value to avoid zero-dividing.

Therefore, our final loss is: 𝐿 = 𝐿𝑎𝑑𝑣 + 𝐿ℓ1 + 𝐿𝑣𝑔𝑔 + 𝐿𝑓 𝑎𝑐𝑒 .

4 EXPERIMENTAL RESULTS

4.1 Experimental setup
4.1.1 Implementation details. We implement our model with Py-
Torch. We use ADAM optimizer with a learning rate of 𝑟𝑎𝑡𝑖𝑜 · 0.002

Table 1. Quantitative comparison with the state-of-the-art methods on the
DeepFashion dataset [Liu et al. 2016].

PSNR↑ SSIM↑ FID↓ LPIPS↓
𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 174 × 256
PATN [Zhu et al. 2019] 17.7041 0.7543 21.8568 0.195
ADGAN [Men et al. 2020] 17.7223 0.7544 16.2686 0.175
GFLA [Ren et al. 2020] 18.0424 0.7625 15.1722 0.167
Ours 18.5062 0.7784 8.7449 0.134

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 348 × 512
GFLA [Ren et al. 2020] 17.9718 0.7540 18.8519 0.170
Ours 18.3567 0.7640 9.0002 0.143

Table 2. Quantitative comparison on 348 × 512 resolution with Style-
PoseGAN [Sarkar et al. 2021] on their DeepFashion dataset train/test split.

PSNR↑ SSIM↑ FID↓ LPIPS↓
StylePoseGAN [Sarkar et al. 2021] 17.7568 0.7508 7.4804 0.167
Ours 18.5029 0.7711 6.0557 0.144

and beta parameters (0, 0.99𝑟𝑎𝑡𝑖𝑜 ). We set the generator ratio to 4
5

and discriminator ratio to 16
17 .

4.1.2 Training. We first train our model by focusing on generating
the foreground. We apply the reconstruction loss and the adversarial
loss only on the foreground.We set the batch size to 1 and train for 50
epochs. This training process takes around 7 days on 8 NVIDIA 2080
Ti GPUs. We then finetune the model by applying the adversarial
loss globally on the entire image. We set the batch size to 8 and train
for 10 epochs. This training process takes less than 2 days on 2 A100
GPUs. At test time, generating a reposing results with 384 × 512
resolution takes 0.4 seconds using 1 NVIDIA 2080 Ti GPU.

4.1.3 Dataset. We use the DeepFashion dataset [Liu et al. 2016]
for training and evaluation. We follow the train/test splits (101,967
training and 8,570 testing pairs) of recent methods [Men et al. 2020;
Ren et al. 2020; Zhu et al. 2019].

4.2 Evaluations
4.2.1 Quantitative evaluation. is reported in Table 1. We report the
human foreground peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), learned perceptual image patch
similarity (LPIPS) [Zhang et al. 2018], and Frechet InceptionDistance
(FID) [Heusel et al. 2017]. PSNR/SSIM often do not correlate well
with perceived quality, particularly for synthesis tasks. For example,
PSNR may favor blurry results over sharp ones. We report these
metrics only for completeness.
Our method compares favorably against existing works such as

PATN [Zhu et al. 2019] ADGAN [Men et al. 2020], and GFLA [Ren
et al. 2020]. Our method also compares favorably against the con-
current work StylePoseGAN [Sarkar et al. 2021]. We report the
quantitative evaluation in Table 2. We train and test our method
using their DeepFashion dataset train/test split.
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Source/Pose PATN ADGAN GFLA Ours Target

Fig. 8. Visual comparison for human reposing.We show visual compar-
ison of our method with PATN [Zhu et al. 2019], ADGAN [Men et al. 2020],
and GFLA [Ren et al. 2020] on DeepFashion dataset [Liu et al. 2016]. Our
approach successfully captures the local details from the source image.

Table 3. The ability to preserve the identity of the reposed person.

Arcface Spherenet

GFLA [Ren et al. 2020] 0.117 0.197
Ours 0.373 0.438
Ground truth 0.555 0.444

4.2.2 Visual comparison. in Figure 8 and Figure 9 show that our
proposed approach captures finer-grained appearance details from
the input source images.

4.2.3 Face identity. We evaluate our model’s ability to preserve
the reposed person’s identity. For test images with visible faces
(7,164 from 8,570), we report in Table 3 the averaged cosine sim-
ilarity between the face features (Arcface [Deng et al. 2019] and
Spherenet [Coors et al. 2018]) extracted from the aligned faces in
the source/target images. Our method compares favorably against
GFLA [Ren et al. 2020].

4.3 Ablation study
For the ablation study, we report the results of the foreground-
focused trained model.

Source/Pose StylePoseGAN Ours Target

Fig. 9. Visual comparison for human reposing.We compare ourmethod
with StylePoseGAN [Sarkar et al. 2021] on their train/test split of DeepFash-
ion dataset [Liu et al. 2016]. Our approach preserves the appearance and
captures the fine-grained details of the source image.

Table 4. The effect of symmetry-guided coordindate inpainting on the Deep-
Fashion dataset [Liu et al. 2016].

PSNR↑ SSIM↑ FID↓ LPIPS↓
Without symmetry 18.8810 0.7886 8.5240 0.129
With symmetry (Ours) 18.9657 0.7919 8.1434 0.124

4.3.1 Symmetry prior. We evaluate the effectiveness of adding the
symmetry prior to the input of the coordinate completion model. We
train our networks with and without this symmetry prior and report
the quantitative results in Table 4. Results show that adding the sym-
metry prior indeed improves the quality of the synthesis. We note
that the symmetry prior generally works well for repetitive/textured
patterns, but may introduce artifacts for unique patterns (e.g., text).

4.3.2 Modulation schemes. Wequantitatively and qualitatively demon-
strate the effectiveness of our proposed spatial modulation.We show
quantitative evaluation in Table 5. We show qualitative results in
Figure 10. Results show that spatially varying modulation improves
the quality of the synthesized human foreground and captures the
spatial details of the source images regardless of the input source
image type.
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Fig. 10. Ablation.We compare our results with other variants, including the modulation types and source of appearance features. We show that the proposed
spatial modulation captures finer-grained details from the source image. Transferring appearance features from the source image leads to fewer artifacts
compared to features from the UV space.

Table 5. Ablation on source for appearance (Incomplete UV, Complete UV,
and Image) and modulation types (Spatial and Non-spatial).

ID Input Source Spatial PSNR↑ SSIM↑ FID↓ LPIPS↓
A Incomplete UV - 18.7385 0.7710 9.4150 0.151
B Incomplete UV ✓ 18.6005 0.7696 9.2321 0.146
C Complete UV - 18.9407 0.7770 9.7435 0.147
D Complete UV ✓ 18.7063 0.7720 9.0236 0.143
E Source image - 18.6027 0.7678 9.4367 0.154
F Source image ✓ 18.7420 0.7739 8.8060 0.139

4.3.3 Sources of appearance. We experiment with multiple variants
for encoding source appearance. Specifically, the incomplete UV,
complete UV (completed using the coordinate completion model),
and source image (our approach shown in Figure 3). We report the
quantitative results in Table 5 and visual results in Figure 10. The
results show that extracting appearance features directly from the
source image preserves more details than other variants.

4.4 Garment transfer Results
Using the UV-space pre-computed mapping table, we can segment
the UV-space into human body parts (Figure 11). We can then use
this UV-space segmentationmap to generate the target pose segmen-
tationmap using the target dense pose 𝑃𝑡𝑟𝑔 . The target segmentation

𝑃"#$𝑆&' 𝑆()*+

UV-to-2D

Fig. 11. Human body segmentation.We create a UV-space segmentation
map 𝑆𝑢𝑣 of the human body using the UV-space pre-computed mapping
table. We use the target dense pose 𝑃𝑡 to map this UV-space segmentation
map to 2D target pose 𝑆𝑃𝑡 which can then be used to combine features
from multiple source images to perform garment transfer.

map allows us to combine partial features from multiple source im-
ages to perform garment transfer. Figure 12 shows examples of
bottom and top garment transfer.

4.5 Limitations
4.5.1 Failure cases. Human reposing from a single image remains
challenging. Figure 13 shows two failure cases where our approach
fails to synthesize realistic hands and clothing textures. Hands are
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Fig. 12. Garment transfer. We show examples of garment transfer for
bottom (left) and top (right) garment sources.

Fig. 13. Failure cases. Our method produces artifacts on the hands (left)
and the skirt (right).

difficult to capture due to the coarse granularity of DensePose. Ex-
plicitly parsing hands could help establish more accurate corre-
spondence between source/target pose (e.g., using Monocular total
capture [Xiang et al. 2019]). Long-hairs and loose-fit clothes (e.g.,
skirts) are challenging because they are not captured by Dense-
Pose. We believe that incorporating human/garment parsing in our
framework may help mitigate the artifacts.

4.5.2 Diversity. DeepFashion dataset consists of mostly young fit
models and very few dark-skinned individuals. Our trained model
thus inherit the biases and perform worse on unrepresented individ-
uals as shown in Figure 14. We believe that training and evaluating
on diverse populations and appearance variations are important
future directions.

Fig. 14. Diverse in the wild cases. Our model inherits the biases of Deep-
Fashion dataset and thus performs worse on unrepresented individuals. Our
method cannot accurately synthesize curly hair (left) and fails in reposing
dark-skinned individuals (right). Images from Unplash.

5 CONCLUSIONS
We have presented a simple yet effective approach for pose-guided
image synthesis. Our core technical novelties lie in 1) spatial modu-
lation of a pose-conditioned StyleGAN generator and 2) a symmetry-
guided inpainting network for completing correspondence field. We
demonstrate that our approach is capable of synthesizing photo-
realistic images in the desired target pose and preserving details from
the source image. We validate various design choices through an
ablation study and show improved results when compared with
the state-of-the-art human reposing algorithms. Our controllable
human image synthesis approach enables high-quality human pose
transfer and garment transfer, providing a promising direction for
rendering human images.
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